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Abstract

The model (Frequency Ratio and Pairwise Comparison) used statistical analysis for eight causal factors (slope,
curvature, elevation, TWI, NDVI, NDSI, land cover, precipitation) of landslide occurrence. All factors were
weighted to apply two-dimensional statistical method of a knowledge-based analytic hierarchical process with
data extracted from the spatial database and then converted into a map. Final susceptibility maps showed a
close agreement between the two models. The models predicted 72.1% and 69% of the empirical data used for
the analysis respectively. These maps can be used to demonstrate the effectiveness of two-dimensional statistical
model through the relationship between each factor with a resultant landslide susceptibility. The proposed
model can be used to reproduce the relationship between each conditional factor without having to resort to
multivariate statistics. The models are a powerful tool for assessing natural hazards, and to produce landslide
probability maps for a better definition of risk zones.

1. Introduction
Cataclysmic events have radically increased in recent
decades. The international community and

factors lead to an increase in landslides and
negatively affect the lives of individuals and the

government organizations are worried about the loss
of human life and ecological damage to properties
caused by extreme events (Guzzetti et al., 1999 and
Shalaby and Tateishi, 2007). Natural hazards have
been globally growing to around 9% of the
catastrophic events overall. Statistics from the Center
for Research on the Epidemiology of Disasters
(CRED) demonstrate that landslides are accountable
for at least 17% of all natural hazard fatalities
worldwide (Pourghasemi et al., 2012). This is
enhanced by progressing deforestation and increased
regional precipitation in avalanche risk zones due to
changing climate (Yilmaz, 2009 and Brabb and
Pampeyan, 1972). Climate change, rising
temperatures, severe rains, melting glaciers, all these
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environment. (Parmesan and Yohe, 2003, Allen et al.,
2010 and Change, 2014). A general analysis of
landslide events has a long history in Kyrgyzstan.
Inventories of landslides and local landslide disasters
are documented on the website of the Ministry of
Emergency Situations of Kyrgyzstan and several
scientific publications. On April 29, 2017, in the
village of Ayuu, Osh Oblast, a landslide with a
volume of 1 million cubic meters buried 24 people
alive. The tragedy was as a result of one of landslides,
which is the largest in recent years.

However, this is not the first case in Kyrgyzstan,
when a landslide causes the death of people. About
34 Kyrgyz pecple were buried alive in a 2017
landslide caused by a geological phenomenon (Barra
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et al., 2016 and Havenith et al., 2015). According to
the report of United Nations Office for Disaster
Reduction (UNISDR) Sub-Regional Office for
Central Asia and Caucasus approximately 5000
landslides have been identified in the country during
1988 to 2007 where about more than 500 settlments
are located hazardous areas. Contrasted with the
customary landslide methods, spatial avalanche
surveillance and forecast is more helpful and efficient
due to innovation in Geographical Information
Systems (GIS) and statistical techniques (Wan and
Chang, 2014, Yu and Chen, 2017 and Yu et al. 2016).
Previously, for the compilation of a map of
landslides, simple methods were used (Sarkar and
Kanungo, 2004 and Mondini et al., 2017). At the
moment, with the progress of GIS, it is possible to
compile hazard maps with the use of high-resolution
remotely sensed images and statistical analysis,
developing an index of landslide susceptibility.

In this scientific work, several factors are
considered that can be involved in the formation of
landslide. Several specialists have utilized
information-driven strategies, different models with
statistics index such as frequency ratio (FR),
evidential belief function (EBF), frequency ratio
weights-of-evidence, logistical regression, artificial
neural networks, and analytical hierarchy process
(Shahabi et al., 2014, Bui et al., 2011 and Wang et
al., 2013). The main difference between this research
and the approaches described in the aforementioned
publications is a GIS-based analysis resulting in a
landslide susceptibility map covering the study area
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(Althuwaynee et al. 2014, Akgun, 2012, Lee et al.,
2013, Mohammady et al., 2012 and Pourghasemi and
Beheshtirad, 2015).

2. Study Area

The study area (Figure 1) is located in the Naryn river
basin, the North-Western part of inner Tien-Shan, it
covers approximately 31560 km?, with altitude
3200m above sea level(asl). The average temperature
in winter is -15°C, in summer +30°C. The average
amount of precipitation is 350-370 mm with 250-500
mm in mountain regions. Across the study area,
slopes are a key natural factor for landslide risk. In
this mountain, massif occurs coverslips, caused by
shear stress acting parallel to a slide surface. When
tensile values exceed the ultimate tensile strength, a
cracked shape is formed. The second stage of the
landslide process is the formation of the landslide
body. The process of landslide formation is
irreversible, Therefore, the prognosis for the
development of this process is one of the most
important problems in the development of mountain
regions. As a result of studies of landslide processes
in the Naryn river basin, major natural features are
identified, in which landslides develop (Barataliev
2010).

Regional contributing features include geology,
geomorphology, soil type, rtecent tectonic
movements, climate and seismicity of the region. The
main parameters of these factors are established for
landslide processes taking place.
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Figure 1: Study area
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A geological feature of the development of landslides
in this territory is the spread of the Mesozoic-Neozoic
rocks, and the indigenous rocks of predominantly
Cretaceous age showing slips. Landslides primarily
occur at 1000 to 3500m asl. The presence of edges,
horsts, wings of tectonic folds and water-bearing
faults in the structure of the slope is a tectonic feature
of the landslide hazard of this territory. The
predominant type of soil in this region is mountain
meadow and mountain meadow-steppe soils. These
are original types of mountain soils. They are formed
under conditions of a large amount of precipitation
affecting meadow motley grass of alpine and
subalpine types on various soil-forming rocks. The
structural mechanism in these soils is coagulative
(precipitation of humus-clay-ferruginous complexes)
and biogenic. The climate plays a significant role in
the development of landslide processes. If during the
year the amount of precipitation exceeds 500mm, in
combination with other factors this leads to the
frequent occurrence of landslides in this region.
Local indicators of the danger of a landslide are
inherent in a certain degree of slope.

This is the presence of traces of the palaeolithic
strata since up to 70% of landslides form on the body
of ancient deposits. A high level of groundwater
relative to the sliding surface of the landslide and its
height of 30-40 cm per day for 6-7 days is a
hydrogeological sign of the landslide danger of this
slope. The properties of soil coverage are the main
factor in the formation and development of a
landslide. The presence of more than 50% of clay
fraction in soil formations and with soil moisture
exceeding 26% is a sign of significant risk of
landslides. One of the main features of the landslide
hazard is the geomechanical state of the coverslips on
the mountain slopes.

3. Data and Methods

The spatial correlation between prediction factors
and the dependent factors were calculated whereby
the study considered eight conditioning factors
(slope, elevation, curvature, land cover, precipitation,
NDVI, NDSI and TWI), and the correlation between
the predictions where calculated. ESRI ArcMap and
Microsoft Excel were used to produce the landslide
susceptibility map and thereafter, a validation of the
prediction accuracy was done using the common
statistical method of Area Under the Curve (AUC).

3.1. Model Application Requirement

To apply the model (FR and PW), dependent factors
and independent factors were required. The
dependent factors are prediction target location
events (landslide, wells and minerals test sites),
whereas the independent factors are predictors
(predisposing factors). Moreover, the conditioning
factors such as the parameters of slope angle, soil
type and land use were also taken into consideration.
With these factors, the identification and mapping of
a set of dependent (target) and independents factors
that are directly or indirectly correlated were
completed and thereafter the relative contribution of
these independents factors in the prediction of
dependent factor were estimated (Table 1). An
ASTER DEM of the study area was downloaded
from the Earth Explorer website
https://earthexplorer.usgs.gov, in addition, Landsat 8
ETM/OLI from http://glovis.usgs.gov. Image files
were combined into one coverage using the mosaic
functionality of ENVI 5.1 software. The Advanced
Spaceborne  Thermal  Emission  Reflection
Radiometer (ASTER) DEM of study area provides a
30%30 m pixel size.

Table 1: Landslide inventory

No. Latitude(N) Longitude(E) Elevation(m) Height of Width of Slope of Landslide
Landslide(m) Landslide(m) surfase(’ )
143 41.40496 74.25377 6321 328 19 48
150 41.42397 74.20401 5656 276 18 50
151 41.48142 74.17505 4845 439 34 35
148 41.50063 74.19118 4849 507 a4 50
154 41.54280 74.16222 6559 66 41 55
155 41.54529 74.13541 5369 441 34 55
156 41.55140 74.11471 5513 123 22 45
157 41.55266 74.11003 5661 154 14 62
158 41.56160 74.09396 5730 67 19 64
161 41.59591 74.10186 5964 150 44 56
163 42.05362 74.07215 6528 176 20 51
166 41.58384 74.09493 5865 70 24 50
168 41.20369 73.39219% 7053 278 10 25
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Figure 2: Processing diagram

The projection of the resulting DEM was established
in WGS84_UTM zone43 N, for accurate estimation
of a slope layer and various parameters. The program
ArcGIS is used to carry out most of the processes

(Figure 2).

3.2 Environmental Factors for Models
Land cover: Land cover factor (D) from initial
processing of satellite imagery was applied to all
datasets (Figure 3). The images were geometrically,
radio-metrically and geographically calibrated and
corrected. An orthogonal correction was made to
avoid mistakes related to topography and landscape
analysis affecting water. The satellite image shows
low contrast duc to a large range of spectral
sensitivity. Therefore satellite data were enhanced
for better visual interpretation and retrieval of
information using both individual and multiband
methods (Mei et al.,, 2016 and El-Zeiny and El-
Kafrawy 2017). The vegetation types considered in
this study were classified into five groups.
Preliminary experiments showed that the vegetation
indices in each group had similar spatial and
statistical characteristics and provided similar
detection of change. Calculation for experimental
vegetation index is given below. Formulas and the
parameters were based on (Richardson and Everitt
1992 and Lyon et al. 1998). Normalized Differential
Vegetation Index (NDVI):
(NIR-RED)

NDVI_(N1R+RED)

Equation 1

The Normalized Difference Soil Index (NDSI) is an
empirical approach for deriving soil information
from vegetation and impermeable surface areas.
NDSI was developed by dividing the normalized soil
index difference of Landsat bands 7 and 2 using
brightness as a soil measure, computed for the
analysis of land cover change using the band ratio
method implemented in ArcGIS (raster calculator)
applied to Landsat imagery (Lee and Pradhan 2006,
Wang et al., 2002 and Mwaniki et al. 2015).
Normalized Differential Scil Index (NDSI):

_ (SWIR2—GREEN)
NDsI= (SWIR2+GREEN)

Equation 2

Precipitation: climate data showing average monthly
precipitation were derived by interpolating each GPS
location obtained from fieldwork. The GPS points
were used to reference climatic data from the
Climatic Research Unit (CRU TS 4.01) 2011-2016
database (http.//www.cru.uea.ac.uk) for the summer
period from 2011 to 2016. The data from
meteorological stations were then transferred, for
each location, separately using the Matlab program,
and then interpolated for the extent of the study site
(39°75-42°75' N / 72°75'-74°75' E).

DEM: Figure 3. The topography is used to identify
the surface soil conditions.Consequently, the
topography represents the surface soil lithology.
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Elevation and slope were also included to describe
the local conditions and to show the effect of surface
geology contrast. If the area is a landslide active
region, all considered parameters provide weights to
the final local value of the potential index (Ahmad
and Singh, 2017 and Montesano et al.,, 2017). The
output of the curvature function can be used to
describe the physical characteristics of a drainage
basin in order to understand erosion and runoff
processes. The profile curvature affects the
acceleration and deceleration of surface flow and,
consequently, affects erosion. The planar curvature
affects the convergence and divergence of the flow.
Topographic Wetness Index (TWI) indicators are
widely used to approximate the characteristics of soil

moisture. The computing method of TWI uses a ratio
index method calculating TWI from the DEM
(Soérensen et al.,, 2006). Flow direction and flow
accumulation are extracted from DEM using
hydrological tools from the Spatial Analyst extension
of ArcGIS 10.2. Equation 1 is used for extraction of
TWI:

TWI = (ﬁ(ﬁ))

Equation 3

Where a value is (flow accumulation +1)*slope, f is
slope radian.
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Figure 3: Factors of the model
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3.3. The Spatial Prediction using Modified
Bivariate Frequency Ratio

The spatial correlation between prediction factors
and the dependent factors were calculated,
considering eight conditioning factors (slope,
elevation, curvature, land cover, precipitation,
NDVI, NDSI and TWI) and the correlation between
these factors were then calculated. ESRI ArcMap and
Microsoft Excel were used to produce the landslide
susceptibility map, and thereafter a validation of the
prediction accuracy was determined using the most
common statistical method of AUC. In this paper,
Relative Frequency (RF) =relative density index and
(RDI) = frequency Ratio (FR) Processing steps:

e Calculating FR, RF, and PR for each factor
e Calculating pairwise comparison
e  Producing susceptibility index map

i (+) = o Pionts
Ratio (+) " %o f class area
R= Q / R
Equation 4
_ Ratio (1,2,3,4,5)
Ratio total
RF="/y
Equation 5

(Q)=% of points
(R)=% of the class area
(m)=ratio

(M)~total ratio

Spatial analysis of spatial factors to measure the
spatial relationship between the conditioning factors
and the occurrence of landslides were done using
binary values. A complete discussion was omitted,
and basic information was not provided regarding the
derivation of the algorithm since (Althuwaynee et al.,
2014) have already discussed some of these
procedures (Table 2). Every feature and causal factor
carries a different degree of negative or positive
impact on the appearance of the slope. Many studies
have revealed this relationship in different
approaches to data specification and experimental
models. The column matrix (Table 3) shows the
pairwise estimates of the relative importance of
predictor variables. The predictor factors quantified,
serve as input for the pairwise analysis (Ghosh et al.
2011)

PR = (RFmaR Fumin )/ARF moRF min)/Min
Equation 6

where RF indicates the association of spatial factors.
Prediction Rate (PR) is a prognostic indicator. The
cigenvectors of the matrix were estimated by
normalizing the pairing result for each column. Each
coefficient of a pair value in a column was divided
by the sum of the pair value of a particular column
by obtaining its own value. The pairwise estimation
of the matrix by estimating the predictors was
obtained by pairwise comparison (Table 3).

Given that the integer values were more
applicable to the ranking process, the fractional
weights were separated by the smallest weight
among all the predictor fractions to convert fractional
predictors to integer weights. Decimal numbers were
also rounded to the nearest fraction (Table 4). When
simulating landslide data, the data was divided into
two groups: training and validation data sets. Until
now, there was no standard approach or method of
selection for training and testing landslide
observations. This standard relationship depends on
the availability and quality of the data. The two main
factors for assessing testing/learning are the stability
of time and space. Landslide observations are
randomly distributed into two spatial groups: a
training data group and a forecasting data group. This
procedure can be repeated in reverse to check the
results of the prediction.

4. Results and Discussion

In accordance with the above mentioned approaches
based on statistics and knowledge, the proposed
integration methodology was carried out as a
bivariate statistical evidential belief function: PW the
integration into the knowledge-based statistics
model, using all the extracted parameters; FR
integration of FR into the model as a
multidimensional model using significant nominated
parameters (Figure 4). The analysis of the spatial
association of the weights and the spatial relationship
between the occurrence of landslides and eight
factors (slope, curvature, altitude, NDVI, NDSI,
TWI, land cover) are listed in Table 3. In this section,
we explicitly describe the association results
extracted with this method and the weights used for
constructing the models (Table 5). In model PW, the
effectiveness of the model as a knowledge-based
model of spatial factor statistics is based on high
subjectivity.
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Table 2: Class weight is figuring of the spatial variables, spatial factors components and the indicators

Prediction Rate (PR) in view of the degrees of the spatial affiliation

Factors Ratio(+) RF minRF maxRF | maxRF-minRF | total minRF PF
Slope 1165091 0.243037 0.128909 | 0.274421 | 0.145512 0.18409 0.79044
1.315543 0.274421
0.759489 0.158429
0.617975 0.128909
0.935787 0.195204
NDVI 0.020884 0.001803 0.001803 | 0.770133 | 0.76833 0.001803 4.173669
8.922392 0.770133
1.580777 0.136444
0.713024 0.061544
0.348446 0.030076
0.770133
Elevation 2.840992 0.527833 5.950081 | 0.527833 | 11.27266 5.950081 61.23452
1.386272 0.257558
0.401445 0.074585
0.753339 0.139964
0.00032 5.95E-05
0.527833
Land cover | 3.0245%96 0.464316 0 0.464316 | 0.464316 0 2.522225
0.278864 0.042809
1.228069 0.188525
1.98256 0.30435
0 0
Curvature 1.501447 0.463138 0.256177 | 0.463138 | 0.206961 0.256177 1.124237
0.909954 0.280685
0.830501 0.256177
NDSI 1.707925 0.307316 0.092777 | 0.307316 | 0.214538 0.092777 1.165399
0.515616 0.092777
1.031232 0.185555
1.018637 0.183289
1.28415 0.231064
TWI 0.63565 0.099301 0.099301 | 0.476078 | 0.376777 0 2.0467
0.723448 0.113016
0.805809 0.125883
1.188856 0.185722
3.047495 0.476078
Precipitation | 0.63565 0.099301 0.099301 | 0.476078 | 0.376777 0 2.0467
0.723448 0.113016
0.805809 0.125883
1.188856 0.185722
3.047495 0.476078
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Table 3: Column matrix of pairwise ratings of the relative importance of predictors

Predictors Curvature Elevation Slope TWI NDVI | Land cover | NDST | Precipitation
Curvature 1 0.964 0.656 | 0.549 0.445 0.269 0.246 | 0.183
Elevation 1.036 1 0.681 0.569 0.462 0.279 0.255 | 0.191

Slope 1.522 1.468 1 0.836 0.678 0411 0.375 | 0279

TWI 1.821 1.756 1.195 1 0.811 0.491 0.448 | 0.334

NDVI 2.243 2.164 1.473 1.232 1 0.604 0.553 | 0411

Land cover 3.712 3.581 2438 | 2.039 1.654 1 0.915 | 0.681

NDSI 4.054 3.911 2.663 2.227 1.807 1.092 1 0.744
Precipitation 5.446 5.254 3.578 | 2.991 2427 1.467 1343 | 1

Table 4: Estimated eigenvectors of the row matrix of pairwise rankings and the weight of predictors

of susceptibility
Land Fractional | Integer
PR Predictors |Curvature |Elevation| Slope | TWI NDVI | cover | NDSI | Precipitation| weight weight
Curvature 1.124 0.047 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 0.383 1.124
Elevation 1.165 0.049 0.049 | 0.049 | 0.049 | 0.049 | 0.049 | 0.049 | 0.049 0.397 1.165
Slope 1.711 0.073 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 0.584 1.711
TWI 2.046 0.087 0.087 | 0.087 | 0.087 | 0.087 | 0.087 | 0.087 | 0.087 0.698 2.046
NDVI 2.522 0.107 0.107 | 0.107 | 0.107 | 0.107 | 0.107 | 0.107 | 0.107 0.861 2.522
Land cover | 4.173 0.178 0.178 | 0.178 | 0.178 | 0.178 | 0.178 | 0.178 | 0.178 1.425 4.173
NDSI 4.558 0.194 0.194 | 0.194 | 0.194 | 0.194 | 0.194 | 0.194 | 0.194 1.556 4.558
Precipitation | 6.123 0.261 0.261 | 0.261 | 0.261 | 0.261 | 0.261 | 0.261 | 0.261 2.091 6.123
Sum 1 1 1 1 1 1 1 1 1 1 235
Table 5: Total sum after validation

Factors Prediction using FR Prediction using PW comparison

Curvature 1.125 0.441

Elevation 1.165 0.459

Slope 1.711 0.672

Twi 2.047 0.804

NDVI 2.522 0.991

land cover 4.173 1.631

NDSI 4.558 1.791

Precipitation 3.062 1.203
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Thus, the weights of PW coefficients are integrated
by a pairwise comparison based on the class weights
and applied to 8 spatial factors when constructing the
results on the success curves. The final map shows
that 20% of the study area, where the landslide
hazard indicator is ranked highly, containing almost
32% of landslide areas. 67 % of the territory is not
affected by landslides. In this study, each factor has
exerted positive and non-positive contributions, with
some factors generating unique results. FR is based
on a two-dimensional statistical method for
determining the weights of classes or densities of
landslides. The data were normalized. The goal of
this method is to transform all real spatial factors for
a nonlinear connection (Pereira and Duckstein,

International Journal of Geoinformatics, Vol. 14, No. 1, January-March, 2018

1993_ENREF_21). Six factors in FR were weighted
to represent the most significant spatial factors
(curvature, clevation, slope, NDVI, precipitatin and
TWI prognosis). This study shows that 72% of the
study area contains almost all landslides. According
to the classification of factors for the two models
(Figure 5), land cover PW show the culmination of
the relative weight of the factors associated with the
actual landslide event, as reflected.

It was also found that the active factors:
precipitation, soil moisture, curvature and inclination
{and inactive crustal coefficients, height and soil
index) are positive and negative (variables in the
equation) in the output data table.
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Table 6: Validation of Frequency ratio and Pairwise comparison

Sensitivity Number of Area Landslide Number of

Method of Validation class pixels percent percent Landslide point
Frequency ratio Not Susceptible 9339741 27.38 8.02 9

Low 13574508 39.79 1.16 10,1

Moderate 2943762 8.63 2.53 4

High 6267115 18.37 5.38 11,12,8,6

Very high 1983822 5.81 1.70 7,3,5,6,2
Pairwise comparison | Not Susceptible | 6631255 19.52 5.74 4.9

Low 9325193 27.45 8.00 0

Moderate 3826629 11.26 3.31 10,2

High 5855138 17.24 5.07 12,8,

Very high 8323415 24.50 7.21 3,11,7,5,6

74

The PW pairwise comparison results and the FR
results contain deviations and similarities between
the selected factors with respect to the magnitude and
sensitivity of the prediction, since the PW is a
nonlinear multidimensional model, whereas the
paired comparison of FR is based on linear two-
dimensional weighing (Ghosh et al., 2011). The
results of this study confirm that elevation, curvature
and precipitation are common significant factors in
the model. The difference between models (PW) and
(FR ):only six factors were used for the model (FR)
(slope, elevation, curvature, precipitation, NDVI and
TWI). The model was compiled without the land
cover factor, and NDSI. The land cover is nominally
scaled and contains several classes and therefore is
considered a methodological problem. The NDSI
showed a very low weights. The basis of all the
weights of the factors was multiplied resulting in a
complete cover of all the risk zones. The final maps
were divided into five classes of equal intervals (very
high, high, medium, low and very low), and seed
analysis was performed (Table 6).

6. Conclusion

This study feature methods such as frequency ratio, a
bivariate statistical technique using GIS tools and
remote sensing data, evaluated in the middle Naryn
river basin of Kyrgyzstan. Models FR and PW
require a simple process, as well as computational
and output processes in comparison with more
elaborate models and their statistics. Landslide
susceptibility maps obtained in this study showed
that a large area is at risk and prone to landslides. The
results show that the accuracy of susceptibility using
a two-dimensional statistical process based on
knowledge by comparing the vulnerabilities of the

landslides using FR and PW is of primary importance
for landslide susceptibility prediction.

Information provided by this assessment of
landslides can help in decision making and
mitigation of natural disasters. The model can also be
used as a forecast tool since workers and engineers
can reduce losses caused by existing and future
landslides by preventing, mitigating and preventing
exposure to risk.
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