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Abstract 

This study conducted the soil moisture estimation using remote sensing data and ground soil moisture sensors 

in the mango plantation. The applied methodology is the spatial and statistical analysis to determine the 

relationship between the measured soil moisture using ground sensors and the remote sensing indices 

generated from Sentinel-2A satellite images. The sensors measured the soil moisture ground data from Nov. 

2019 to Feb. 2020. However, we used only the data on seven dates. This is because the cloud-free satellite 

images are available only on these dates to generate the remote sensing indices. The used indices are NDVI, 

Normalized Water Moisture Index (NDWI) for vegetation water content monitoring, Normalized Soil 

Moisture Index (NSMI) for data visualization and analysis. In the implementation, we first visualized the soil 

moisture trend compared with the remote sensing indices value at the image pixels of sensor location on each 

observation day. Next, we statistically analyzed the spatial data to establish the relationship between the soil 

moisture from all the ground sensors and the remote sensing indices. However, the output R2 is very low; 

then, it brings us to have an idea to apply in-depth analysis based on the ground sensor performance.  This 

method shows an interesting result. We found that only the NDWI for monitoring vegetation water content has 

a similar trend with the soil moisture. Secondly, we performed the linear regression correlation between soil 

moisture and remote sensing indices values of each sensor as time-series analysis. The result show that the 

correlation between soil moisture and NDWI, NSMI and NDVI are classified into 3 groups, which are 0.7 < 

R2 < 0.9, 0.6 < R2 < 0.7, and R2 < 0.5, where their corresponding p-value ranges are 0.001 < p-value < 0.02, 

0.01 < p-value < 0.03, and 0.08 < p-value < 0.9, respectively. Lastly, we investigated the reason that causes 

the very high correlation between the soil moisture value of the first group of sensors and NDWI and NSMI. 

The result shows that these sensors are in a sparse vegetation cover area, where NDVI ≤ 0.3. Therefore, 

according to this, we can conclude that remote sensing indices NDWI and NSMI can be applied for soil 

moisture estimation in a sparsely vegetated study area, where the NDVI value should be less than or equal to 

0.3. 

 

 

1. Introduction 

Soil moisture is an important variable for natural 

disasters and environmental applications. In 

agriculture, it directly impacts plant health, drought 

monitoring, and water resources management. 

Because of this, a research project to implement soil 

moisture measurement using a sensor measurement 

system in the sample agricultural fields is necessary. 

Therefore, soil measurement sensors network as the 

Internet of Things (IoT) for agriculture is applied to 

the mango plantation.  
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This project is a collaboration between Kasetsart 

University, Walailak University, Valaya Alongkorn 

Rajabhat University, and Office of Engineering for 

Land Development (OELD) under the Land 

Development Department of Thailand.The sensors 

network measures the soil moisture in near real-time 

and is controlled online. The measured data are 

transmitted online in the defined interval to the 

cloud web server. These data archives in the 

database operate in the mobile application 'Agri-

Map'. The project provides a low-cost measurement 

system, affordable for the farmers. However, using 

ground sensors to measure soil moisture can be done 

only in a limited area. It is not possible to establish 

an extensive sensor measurement system to a large 

extent due to budget and maintenance costs. 

Therefore, the only efficient way to monitor the soil 

moisture status in sizeable agricultural land is to 

apply remote sensing, and GIS. Various research 

involved remote sensing technology for soil 

moisture estimation using different techniques were 

conducted. 

Ahmad et al., (2011) summarized various remote 

sensing methods for soil-moisture estimation. They 

have pointed out that many research papers have 

introduced different methods to retrieve soil-

moisture information from different remote sensing 

data types, such as optical data or radar data. They 

evaluated the most potential methods for retrieving 

soil-moisture information of bare soil and 

vegetation-covered soil. They overviewed soil-

moisture retrieval methods using different remote 

sensing data, including active or passive. They have 

compared the results of the methods, including the 

advantages and limitations of each method. The 

comparison shows that a combination of both active 

and passive sensing methods provides reliable 

results. Petropoulos et al., (2015) explained that all 

electromagnetic spectrum regions could measure 

soil moisture and various techniques to some level 

or different. They provided a whole scenario of the 

applications made during the last 20 years to 

estimate surface soil moisture using satellite 

imagery, mainly focusing on retrievals from 

microwave sensors. In this research work, they 

considered the new techniques developed by 

combining optical and thermal infrared remote 

sensing, active and passive microwave. Ray et al., 

(2017) conducted a study to evaluate four 

significant soil moisture (SM) products derived 

from satellite imagery over the state of Texas, which 

are related to different remote sensing systems. The 

systems are Advanced Microwave Scanning 

Radiometer—Earth Observing System (AMSR-E), 

the Soil Moisture Ocean Salinity system (SMOS), 

AMSR2, and the Soil Moisture Active Passive 

system (SMAP). This study shows that sensor 

accuracy and the applied algorithms used in the data 

processing process influence the generated SM data 

quality. The soil moisture measurements are 

considered reasonable and effectively used for 

different applications, including flood forecasting 

and drought prediction. Filion et al., (2015) applied 

microwave and optical remote sensing data to 

generate reliable soil moisture maps to support 

water management and agricultural practice in 

Mediterranean regions, particularly during dry 

seasons. The research is based on field surveys in 

the period from 2005 to 2009 in Sardinia, Italy. The 

result is an empirical model for estimating bare soil 

moisture, with a coefficient of determination (R2) of 

0.85. They also used Landsat TM5 satellite imagery 

for soil moisture estimation using the temperature 

and vegetation index relationship, which produced 

the best linear relationship with an R2 of 0.81. Two 

empirical models using C-band SAR data for 

assessment of surface moisture show the R2 of 0.76. 

A downscale model on soil moisture estimation is 

shown in research by Park et al., (2017) using 

remote sensing physical variables using the Global 

Land Data Assimilation System (GLDAS) soil 

moisture. This data used as a reference dataset for 

the East Asian region based on optimizing a 

modified regression tree. They used six variables 

from microwave, optical remote sensing, and digital 

elevation models. Land Surface Temperature (LST), 

Normalized Difference Vegetation Index (NDVI), 

and land cover use as input variables. The study 

shows a reliable result, which is daily high-

resolution soil moisture data from various satellite 

sources. Babaeian et al.,, (2019) has developed the 

OPtical TRApezoid Model (OPTRAM) used for 

watershed-scale soil moisture estimation based on 

shortwave infrared (SWIR) transformed reflectance 

(TRSWIR) and the normalized difference vegetation 

index (NDVI) from remote sensing data. Their 

research aimed to evaluate OPTRAM for field-scale 

precision agriculture applications using ultrahigh 

spatial resolution optical observations obtained with 

field robotic phenotyping scanners located in 

Maricopa, Arizona. Machine learning technique also 

was used in the research conducted by Torres-Rua et 

al., (2016). They have described in their study a new 

approach to estimate volumetric surface soil 

moisture by statistical analysis of different potential 

predictors that include vegetation indices and energy 

balance products generated from Landsat imagery 

and weather data.  
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This technique applied a statistical learning machine 

called a Relevance Vector Machine (RVM) to 

identify the potential predictions for soil moisture 

estimation utilizing stratified cross-validation and 

forward variable selection. Alexandridis et al., 

(2016) noted in their research that soil moisture is 

hard to estimate the soil moisture at the catchment 

scale and frequent periods, as is required by many 

hydrological, erosion, and flood simulation models. 

They described a methodology to estimate soil 

moisture using the satellite-derived evaporative 

fraction with soil and meteorology information. 

They also used a time series of MODIS satellite data 

to estimate soil moisture maps with eight days at a 

250-m spatial resolution for three different 

catchment areas in Europe. The results show that the 

developed technique can estimate soil moisture 

maps at the studied scale, within the 250-m spatial 

resolution of eight days. The soil moisture 

estimation in coastal soils was conducted by Klemas 

et al., (2014) to understand the soil properties 

necessary for agriculture and maintaining natural 

environments, including wetlands. The authors 

analyzed the beach characteristics, which are soil 

moisture, grain size, and type. The new applied 

technology allowed microwave remote sensing to 

measure soil moisture globally in the top of few 

centimeters. The advantage of remote sensing can 

be used with the ground sensor measurement 

system, where the ground sensor can provide in-situ 

soil moisture data, then, the soil moisture estimated 

from satellite imagery can be validated using the in-

situ data. 

 

2. Scope of the Study 

This research aims to establish the relationship 

between the measured in-situ data and the remote 

sensing indices. In this research, the scope is 

detailed as below: 

• Since the selected study area of this 

collaboration project is not large, then the 

number of sensors for soil moisture 

measurement used in this research is limited. 

• We have selected the remote sensing indices, 

NDVI, NDWI, and NSMI, obtained from the 

satellite images to be the leading indices to 

establish their relationship with the soil 

moisture data measured in the study area. 

These are the main variables of the study. 

• The methodology used here is the 

straightforward statistical analysis to establish 

the relationship of the variables listed above. 

Consequently, the results obtained from the 

analysis provide different correlation levels of 

these variables. 

 

3. Study Area 

The study area is the experimental mango plantation 

plot locates in the Pakchong district of Nakhon 

Ratchasima Province, Northeastern Thailand, at 

14.6783° N, 101.4176° E as shown in Figure 1.  

  

 
 

Figure 1: Map of Nakhorn Ratchasima province with the study area shown by a red dot 
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Figure 2: A very-high-resolution Satellite image from Google Earth dated Dec. 20, 2019 shows the study area 

and the soil moisture sensors with labeling numbers 

 
Figure 3: Flowchart of the methodology of the study 

 

This plot belongs to the Land Development 

Research and Technology Transfer Center 

(LDRTTC) in the district.  The plot's size is 55 m 

vertical by 64 m horizontal, as shown in Figure 2. 

However, the ground measurement sensors' 

distribution covers only about half of the plot, in the 

upper part. The characteristics of the study area in 

terms of soil properties: the soil is deep and well 

drainage, clayey, and clay loam texture.  

The land use here is mainly covered by maize fields 

but with some orchards. 

 

4. Methodology and Data 

The methodology in this study consisted of the 

following parts, which are illustrated in the 

flowchart below (Figure 3). The study started with 

the soil moisture data (denoted as M) collection 

from the sensors.  
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Then, the data cleaning was applied to select only 

the relevant parameters for the study and grouped 

them into daily soil moisture datasets (Section 4.1). 

Next, these datasets were compared with the remote 

sensing satellite imagery to establish a time-series of 

daily matching data pairs consists of M and satellite 

data for the same acquisition date and time (Section 

4.2). Normalised Difference Vegetation Index 

(NDVI), Normalised Difference Water Index 

(NDWI) developed for vegetation water content 

monitoring (Gao, 1996), and Normalized Soil 

Moisture Index (NSMI) images were generated for 

the selected time-series dataset (Section 4.3). 

Applying these datasets of M and its corresponding 

indices, the visualization of the trend for M 

comparing with the indices value in each matching 

daily dataset was carried out (Section 5.1). Next, the 

linear regression correlation between M and the 

indices for each sensor as a time-series analysis is 

performed (Section 5.2). The result brings us to the 

reason that causes different values R2 of the 

relationship between m and NDWI and NSMI for 

the sensors in the study area. The details of the 

methodology's implementation are explained in 

sections 4.1-4.3, and the results are shown in 

sections 5.1-5.2. 

 

 

 

4.1 Soil Moisture Sensor Measurement Data 

Collection 

The soil moisture measurement system used in this 

research consists of 13 sensors divided into two 

groups as A and B. The Group A has 9 sensors, 

(with labels as 01A, 04A, 10A, 07A, 13A, 16A, 19A 

and 25A) and group B has 4 sensors (with labels of 

01B, 04B, 07B, and 13B). All of the sensors were 

positioned in the depth of 10 cm below the soil 

surface. The letter 'p' in Figure 4 denoted the sensor 

as a point. The soil moisture value used in this study 

was the moisture of the soil at the depth of 10 cm 

below the soil surface. In order to learn about the 

accuracy of the sensors, the SM150T soil moisture 

sensor was used for calibration and it has 

dependable ± 3% soil moisture accuracy.  

The spacing between the sensors is 6 m and 8 m 

in the diagonal and vertical direction. The sensors 

were positioned followed the mangos’ canopy. The 

NDVI image below (Figure 4) generated using the 

Sentinel-2 data, acquired on December 18, 2019, to 

show the locations of the sensors comparing to the 

Sentinel-2 image pixels. Most of the sensors were 

locating in the different pixel except 04A and 22A 

which is located in the same pixel. In this case, the 

measured soil moisture of these two sensors during 

the observation period is nearly similar (0.15-

0.18%), which the difference is very small, that is 

about 0.03%. Therefore, we can use the measured 

soil moisture from one of them.  
  

 
Figure 4: The locations of the sensors comparing to the Sentinel-2 image pixels 
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These sensors are connected to the controller box, 

consisting of an electric controller, data collector, 

and Internet connection box for data transferring to 

the data archiving system on the cloud. The sensors 

collect the soil moisture data from Nov. 07, 2019, to 

Feb. 04, 2020, in CSV format with different 

variables. The geographic coordinates of the sensors 

were shown in Table 1. 

 

4.2 Sentinel-2 Satellite Imagery 

Since the study area is approximately 3,500 m2, 

which is not large, and we need precise details of 

the ground cover. Therefore, we selected the 

satellite imagery acquired by the Sentinel-2A and 

2B. The Sentinel-2 mission belongs to the 

Copernicus program, which has been developed and 

operated by the European Space Agency (ESA) 

since June 2015. Both Sentinel-2A and 2B is a sun-

synchronous-orbit satellite at the altitude of 786 km. 

These satellites have a similar primary sensor 

named Multispectral Instrument (MSI) that has 13 

spectral bands ranging from visible, near-infrared 

(NIR), and shortwave infrared (SWIR), with three 

spatial resolutions of 10, 20, and 60 m. The field of 

view or image swath of 290 km. The revisit 

frequency of each satellite is 10 days, where the 

combination of their revisit is 5 days. The MSI 

instrument has a radiometric resolution of 12 bits 

per pixel, which allows the image to have a range of 

0 to 4095 potential light intensity values or grey 

levels for the digital pixel value. The satellite 

images are freely available at the Sentinel Hub 

website (sentinel-hub.com). The Spectral bands for 

the Sentinel-2 sensors are shown here below in 

Table 2 (Wikipedia, 2021). 

 

Table 1: Part of the soil moisture data after data cleaning with the total number of 15 sensors in group B 
 

Device ID Hum Lng Lat Record Time Record Time 

1 28.10 101.4180 14.6784 2019-11-07 22:15:45 

2 24.80 101.4180 14.6784 2019-11-07 22:15:45 

3 16.70 101.4180 14.6784 2019-11-07 22:15:45 

4 27.90 101.4178 14.6784 2019-11-07 22:15:45 

5 27.50 101.4178 14.6784 2019-11-07 22:15:45 

6 20.40 101.4178 14.6784 2019-11-07 22:15:45 

7 8.80 101.4177 14.6785 2019-11-07 22:15:45 

8 27.40 101.4177 14.6785 2019-11-07 22:15:45 

9 18.90 101.4177 14.6785 2019-11-07 22:15:45 

10 0.00 101.4176 14.6785 2019-11-07 22:15:45 

11 25.50 101.4176 14.6785 2019-11-07 22:15:45 

12 0.00 101.4176 14.6785 2019-11-07 22:15:45 

13 22.50 101.4175 14.6785 2019-11-07 22:15:45 

14 29.10 101.4175 14.6785 2019-11-07 22:15:45 

15 30.70 101.4175 14.6785 2019-11-07 22:15:45 
 

Table 2:  List of 13 soil moisture sensors in groups A and B with their ID number and geographic coordinates 

in Longitude (Lon.) and Latitude (Lat.) used in this study 
 

ID Lon. Lat. ID Lon. Lat. 

01A 101.4175 14.6786 22A 101.4176 14.6785 

04A 101.4176 14.6786 25A 101.4175 14.6786 

07A 101.4177 14.6786 01B 101.4180 14.6784 

10A 101.4179 14.6785 04B 101.4178 14.6784 

13A 101.4180 14.6785 07B 101.4177 14.6785 

16A 101.4179 14.6785 13B 101.4175 14.6785 

19A 101.4178 14.6785    
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Figure 5: The study area (highlighted by yellow dash-line box) and surrounding, shown by Sentinel-2A image 

in the false-color composite based on bands 8,4,3 on the acquisition date of Dec. 13, 2019 

 

Since the sensors collect soil moisture data from 

Nov. 07, 2019, to Feb. 04, 2020; however, the less-

cloud Sentinel-2 image data in archiving at Sentinel 

Hub are available only for 7 dates, which are Nov. 

08, 2019, Dec. 08, 2019, Dec. 13, 2019, Dec. 18, 

2019, Jan. 27, 2020, and Feb. 01, 2020, at 03:40-

03:42 GMT, which form our observation period of 7 

dates. Figure 5 illustrates the Sentinel-2A image in 

false-color composite based on bands 8,4,3 covering 

the study area (highlighted by yellow dash-line box) 

and surrounding for the acquisition date of Dec. 13, 

2019. 

 

4.3 Remote Sensing Vegetation-Water-Soil Related 

Indices 

The study area is covered by different sizes of tree 

crows and leaves densities that define the dense and 

sparse vegetation density. If we use only the soil 

moisture index images generated by satellite 

imagery, it would not be possible to have the soil 

moisture estimation on the ground surface. The 

dense vegetation blocks the satellite sensor visibility 

and can deviate the soil moisture estimation. 

Therefore, we applied remote sensing indices that 

are related to vegetation and water. The indices are 

the normalized difference vegetation index (NDVI), 

Normalized Difference Water Index (NDWI) (Gao 

1996) for monitoring water content in vegetation 

leaves, and the Normalized Soil Moisture Index 

(NSMI). Since NSMI was used to find the 

correlation with NDVI generated from Sentinel-2 

(Carmelo et al., 2019), we use it as the primary 

index together with NDWI. NDVI is used only as a 

supplementary index at the end of the study to 

describe the vegetation density in the area. The 

definition of these indices is shown by the following 

Equations (1) – (3) below: 

 

NDVI  =
NIR − Red

NIR + Red
 

Eqaution 1 

  

NDWI =
NIRn − SWIR

NIRn + SWIR
 

Eqaution 2 

 

NSMI =
SWIR1 − SWIR2

SWIR1 + SWIR2

 

 

Eqution 3 

 

In equation (2) and equation (3), NIRn is Narrow 

NIR (Band 8A), SWIR1 and SWIR2 is Shortwave 

infrared band of Band 11 and Band 12, respectively. 

Figure 6 shows an example of vegetation-water-

content indices: NDVI, NDWI, and NSMI of the 

study area for the case of Dec. 13, 2019. 
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Figure 6: Examples of vegetation-water-content indices: (a) NDVI, (b) NDWI, and (c) NSMI of the study  

area for the case of Dec. 13, 2019 
 

5. Results 

5.1 Visualization and Comparison Trend of 

Measured Soil Moisture with Remote Sensing 

Indices 

We denoted the soil moisture value, measured by 

the ground as m. The data analysis started with the 

visualization of the changing trend compared with 

the remote sensing indices value (NDWI and NSMI) 

in the observation period of 7 dates. Here, since the 

indices have the range of -1.0 to 1.0, we normalized 

the M value from its range 0-100% to 0.0-1.0 and 

denoted it as m to have consistency with the indices. 

Since the range of m and indices is normalized, we 

denoted this normalized value as n, and put it on the 

vertical axis of the graphs in Figures 7-13. In this 

part of the data analysis, we have removed sensor 

07B, as described in Section 4.1 Therefore, there are 

only 12 sensors on the horizontal axis of the graph. 

The result shows that m and NDWI get along with 

each other for most of the dates as shown in Figures 

7-13. 

 

5.2 Linear Regression Correlation between 

Measured Soil Moisture and Remote Sensing 

Indices Values 

Initially, the whole dataset of all 13 sensors during 

the observation period were used to analyze the 

relationship between the soil moisture data m 

collected by the sensors and their corresponding 

remote sensing indices. Then, in the sub-section 

5.2.1, we will describe the relationship between the 

measured soil moisture with each of the remote 

sensing indices starting with NDWI and following 

with the description of the relationship between m 

and NSMI in next sub-section 5.2.2. After that, 

based on the finding in these two subsections, we 

group the sensors with very high, high and low 

correlation between m and NDWI and NSMI. 

 

5.2.1 Linear regression correlation between 

measured soil moisture and NDWI 

In the previous section, we have seen that the 

variables m, which is the measured soil moisture 

value and NDWI have similar trends for most 

observation dates.  

 

This section analyzes the relationship and trends 

between these values of each sensor in a time series 

of all dates.  
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Table 3 shows an example of m value and 

corresponding remote sensing indices for each date 

of sensor 01A. 

 

Table 3: Soil moisture and its corresponding remote sensing indices value of sensor 01A for each date 
 

ACQ. Date ACQ. Time m NDWI NSMI ID 

Nov. 08, 2019 10:40 0.3060 0.2216 0.2672 01A 

Dec. 03, 2019 10:41 0.2780 0.1597 0.2400 01A 

Dec. 08, 2019 10:41 0.2710 0.1643 0.2391 01A 

Dec. 13, 2019 10:41 0.2700 0.1208 0.2514 01A 

Dec. 18, 2019 10:41 0.2720 0.1115 0.2445 01A 

Jan. 27, 2020 10:42 0.2570 0.0861 0.1834 01A 

Feb. 01, 2020 10:42 0.2530 0.0496 0.2072 01A 

 

 
 

Figure 7: Comparison Trend of Measured Soil Moisture m with NDWI, and NSMI for the  

case of Nov. 08, 2019 
 

 
 

Figure 8: Comparison Trend of Measured Soil Moisture m with with NDWI, and NSMI for the 

case of Dec. 03, 2019 
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Figure 9: Comparison Trend of Measured Soil Moisture m with NDWI, and NSMI for the  

case of Dec. 08, 2019 
 

 
 

Figure 10: Comparison Trend of Measured Soil Moisture m with NDWI, and NSMI for the  

case of Dec. 13, 2019 
 

 
 

Figure 11: Comparison Trend of Measured Soil Moisture m with NDWI, and NSMI for the  

case of Dec. 18, 2019 
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Figure 12: Comparison Trend of Measured Soil Moisture m with NDWI, and NSMI for the  

case of Jan. 27, 2020 
 

 
 

Figure 13: Comparison Trend of Measured Soil Moisture m with NDWI, and NSMI for the  

case of Feb. 01, 2020 

 

We calculated the R2 and p-value of the linear 

regression correlation between the m and remote 

sensing indices values for each sensor. For NDWI, 

the result is shown in Table 4 and Figure 14; and for 

NSMI, the result is shown in Table 5. and Figure 15. 

In these Figures, we have illustrated the 13 sensors 

as sequential numbers for simplicity. 

 

5.2.2 Linear regression correlation between 

measured soil moisture m and NSMI 

For the correlation between m and NDWI, the 

sensors No. 01A, 01B, 13A and 13B have very high 

R2 ≥ 0.6 (0.6637 – 0.87) and low p-value (0.01-0.04 

< 0.05), while the sensors No.07B, 19A, 16A and 

04B have high R2 > 0.6 and R2 < 0.7 (0.61 – 0.67) 

and low p-value (0.02-0.03 < 0.05). The remained 

sensors have low R2 < 0.5 and high p-values (p-

value > 0.05), which are not significant. For the 

correlation between m and NSMI, the sensors No. 

01B, 13A, 13B, 19A and 04B have very high R2 ≥ 

0.7 and R2 < 0.7 (0.71 – 0.94) and low p-value 

(0.0003-0.01 < 0.05), while the sensors No. 01A, 

07B and 16A have high R2 > 0.6 and R2 < 0.7 (0.66 

– 0.69) and low p-value (0.01-0.02 < 0.05). The 

remained sensors have low R2 < 0.5 and high p-

values (p-value > 0.05), which are not significant. 

We have found here in the relationship between the 

value m of some sensor and the remote sensing 

indice value have a very high correlation. These 

sensors are No. 01A, 01B, 13A and 13B for NDWI 

(R2 = 0.7951 - 0.8787) as shown in Table 5. 

Similarly, for the case between m and NSMI are the 

sensors No. 01B, 13A, 13B, 19A, and 04B (R2 = 

0.7183 - 0.9408).  
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Figure 14: R2 and p-value of the correlation between m and NDWI for each sensor for in observation dates 
 

 
Figure 15: R2 and p-value of the correlation between m and NSMI for each sensor for in observation dates 

 

 

Sensor ID R2 p-value 

01A 0.8689 0.0022 

01B 0.7951 0.0070 

13A 0.8787 0.0018 

10A 0.2891 0.2132 

07A 0.3128 0.1918 

04A 0.3921 0.1325 

13B 0.8326 0.0042 

07B 0.6719 0.0240 

19A 0.6851 0.0215 

16A 0.6140 0.0371 

04B 0.6668 0.0250 

25A 0.0152 0.7925 

22A 0.0317 0.7025 

Sensor ID R2 p-value 

01A 0.6637 0.0256 

01B 0.9099 0.0009 

13A 0.9408 0.0003 

10A 0.2070 0.3050 

07A 0.4339 0.1076 

04A 0.4723 0.0880 

13B 0.7748 0.0089 

07B 0.6964 0.0195 

19A 0.7183 0.0160 

16A 0.6944 0.0199 

04B 0.7955 0.0250 

25A 0.0001 0.9844 

22A 0.0125 0.8114 

Table 4: The R2 and p-value of the linear 

regression between the m and NDWI value 
Table 5: The R2 and p-value of the linear 

regression between the m and NSMI value 
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5.2.3 Sensors grouping by very high, high and low 

correlation between m and NDWI and NSMI 

Apart of that, we have found the sensors with good 

correlation value between m and the indices. These 

are the sensors 07B, 19A, 16A and 04B for the case 

of m and NDWI (R2 = 0.6140 - 0.6851) and 01A, 

07B and 16A for the case of m and NSMI (R2 = 

0.6637 - 0.6964). The other remained sensors have 

R2 lower than 0.5, which is not significant. These 

sensors are No. 10A, 07A, 04A, 25A, and 22A for 

the case between m and NDWI (R2 = 0.0152 - 

0.3921) and between m and NSMI, the sensors are 

10A, 07A, 04A, 25A, and 22A (R2 = 0.0125 - 

0.4723). According to the above analysis, we have 

sensors in 3 groups by their R2 values as 1) very 

high, 2) high and 3) low, illustrated in Google Earth 

map with placemarks in round shape highlighted in 

dark green (very high R2), light green (high R2), and 

yellow (low R2) as shown in Figure 16. From the 

first group of sensors, if we select sensors 01B and 

13A to group together as listed in Table 6, we 

obtained very high correlation value (R2 = 0.715) 

between m value and NDWI (Figure 17), also very 

high correlation value (R2 = 0.7825) for the case 

between m and NSMI (Figure 18). This shows us 

that these two sensors give very high correlation. 

Similarly, the combination of sensors 01A, 01B, and 

13A (Table 7) gives very high correlation (R2 = 

0.8038) between m value and NDWI (Figure 19). 

 

 
 

Figure 16: 3 groups of sensors classified by their R2 values 
 

Table 6: The normalised soil moisture m and its corresponding NDWI and NSMI values of  

sensors 01B and 13A 

 

Date ID m NDWI NSMI 

Nov. 08, 2019 01B 0.2790 0.1661 0.2884 

Dec. 03, 2019 01B 0.2350 0.0416 0.2107 

Dec. 08, 2019 01B 0.2280 0.0502 0.2226 

Dec. 13, 2019 01B 0.2270 0.0436 0.2262 

Dec. 18, 2019 01B 0.2270 -0.0137 0.2112 

Jan. 27, 2020 01B 0.2090 -0.1733 0.1627 

Feb. 01, 2020 01B 0.2040 -0.1778 0.1749 

Nov. 08, 2019 13A 0.2570 0.1738 0.2927 

Dec. 03, 2019 13A 0.2090 0.0223 0.2194 

Dec. 08, 2019 13A 0.2000 -0.0006 0.1960 

Dec. 13, 2019 13A 0.2000 0.0029 0.2229 

Dec. 18, 2019 13A 0.2000 -0.0743 0.1906 

Jan. 27, 2020 13A 0.1810 -0.1889 0.1586 

Feb. 01, 2020 13A 0.1780 -0.1752 0.1583 
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Table 7:  List of selected sensors of high correlation between m and NDWI 
 

Date ID m NDWI NSMI 

Nov. 08, 2019 01A 0.3060 0.2216 0.2672 

Dec. 03, 2019 01A 0.2780 0.1597 0.2400 

Dec. 08, 2019 01A 0.2710 0.1643 0.2391 

Dec. 13, 2019 01A 0.2700 0.1208 0.2514 

Dec. 18, 2019 01A 0.2720 0.1115 0.2445 

Jan. 27, 2020 01A 0.2570 0.0861 0.1834 

Feb. 01, 2020 01A 0.2530 0.0496 0.2072 

Nov. 08, 2019 01B 0.2790 0.1661 0.2884 

Dec. 03, 2019 01B 0.2350 0.0416 0.2107 

Dec. 08, 2019 01B 0.2280 0.0502 0.2226 

Dec. 13, 2019 01B 0.2270 0.0436 0.2262 

Dec. 18, 2019 01B 0.2270 -0.0137 0.2112 

Jan. 27, 2020 01B 0.2090 -0.1733 0.1627 

Feb. 01, 2020 01B 0.2040 -0.1778 0.1749 

Nov. 08, 2019 13A 0.2570 0.1738 0.2927 

Dec. 03, 2019 13A 0.2090 0.0223 0.2194 

Dec. 08, 2019 13A 0.2000 -0.0006 0.1960 

Dec. 13, 2019 13A 0.2000 0.0029 0.2229 

Dec. 18, 2019 13A 0.2000 -0.0743 0.1906 

Jan. 27, 2020 13A 0.1810 -0.1889 0.1586 

Feb. 01, 2020 13A 0.1780 -0.1752 0.1583 

Nov. 08, 2019 13B 0.2250 0.1757 0.2782 

Dec. 03, 2019 13B 0.1680 0.0941 0.2517 

Dec. 08, 2019 13B 0.1600 0.1014 0.2379 

Dec. 13, 2019 13B 0.1550 0.0732 0.2524 

Dec. 18, 2019 13B 0.1570 0.0214 0.2348 

Jan. 27, 2020 13B 0.1320 -0.0241 0.1879 

Feb. 01, 2020 13B 0.1280 -0.0503 0.2016 

 

 
 

Figure 17: Correlation between m and NDWI for sensors 01B and 13A 
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Figure 18:Correlation between m and NSMI for the group sensors 01B and 13A 
 

 
 

Figure 19: Correlation between m and NDWI for the group of sensors 01A, 01B and 13A 
 

 
 

Figure 20: Correlation between m and NSMI for the group of sensors 01A, 01B and 13A 
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However, for the case of the correlation between m 

and NSMI for these sensors, we obtained a not very 

high correlation (R2 = 0.6031) as shown in Figure 

20. This shows that the group of these three sensors 

give very high correlation between their m value and 

NDWI, but not very high with NSMI. Also, if we 

group the sensors 01B, 13A, and 13B together 

(Table 8), we obtained a very low correlation value 

R2 = 0.1184 for the case between m value and 

NDWI (Figure 21) and R2 = 0.0590 for the case 

between m and NSMI (Figure 22). This shows that 

these three sensors form a combination of ground 

sensors that give a very low correlation. Finally, if 

we group all sensors 01A, 01B, 13A, and 13B 

together (Table 7), we obtained a low correlation 

value R2 = 0.3288 (Figure 23) for the case between 

m value and NDWI, and R2 = 0.1788 for the case of 

the correlation between m and NSMI (Figure 24). 

This shows that, when we added sensor No. 13B to 

the group of the three sensors, it causes a low 

correlation for the case between m value and NDWI. 

According to the analysis above, the group of the 

sensors 01B and 13A gives very high correlation 

value of R2 for both relationships between m and 

NDWI (R2=0.7150) and between m and NSMI 

(R2=0.7825). When we added the sensor 01A to this 

group, the correlation value become much higher for 

the case between m value and NDWI (R2 = 0.8038). 

For the case between m value and NSMI, R2 value 

reduced from 0.7825 to 0.6031, however, it is still 

good correlation. If we added the sensor 13B to this 

group as the 4th sensor, the R2 value between m and 

NDWI, as well as between m and NSMI, become 

low as 0.3288 and 0.1788, respectively.  

 

 
 

 

Figure 21: Correlation between m and NDWI for the group of sensors 01B, 13A, and 13B 

 

 
 

Figure 22: Correlation between m and NSMI for the group of sensors 01B, 13A, and 13B 
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Figure 23: Correlation between m and NDWI for sensors 01A, 01B, 13A, and 13B 

 

 
 

Figure 24: Correlation between m and NSMI for the group of sensors 01A, 01B, 13A, and 13B 

 

Lastly, if we remove the sensor 01A from this group 

and remain only 01B, 13A, and 13B, the R2 value 

between m value and NDWI, as well as between m 

value and NSMI, become very low as 0.1184 and 

0.0590, respectively. Therefore, based on this result, 

it shows that sensor 13B causes the R2 value to be 

very low, regardless sensor 13B is from the first 

group of sensors of very high and high R2 values. 

The summary of the R2 value related to these sensor 

groups is shown in Table 8. In Table 9, the 

correlation between m value and NDWI for the 

sensor of 01B and 13A maintain good value (R2 = 

0.7150). When sensor 01A is added, R2 is increased 

to 0.8038 as very high correlation, unlike the case 

between m and NSMI, R2 is reduced to 0.6031. 

After adding sensor 13B to the group of the sensor 

01A, 01B and 13A, R2 between m and NDWI is 

reduced to 0.3288, and for the case between m and 

NSMI, R2 is reduced to 0.1788.  

The R2 value becomes also low for the correlation 

between m and NDWI (R2 = 0.1184), similarly for 

the correlation between m and NSMI (R2 = 0.0590), 

after removing the sensor 01A from this group to 

have only the sensor 01B, 13A, and 13B. This 

summary shows that NDWI is more suitable than 

NSMI to work on soil moisture estimation, also 

investigated the reason that causes different R2 

value for the correlation between m and NDWI, and 

between m and NSMI. According to the spatial 

distribution of the sensors as seen in the Google 

Earth image taken on Dec. 20, 2019 (Figure 16), the 

sensors were buried in a depth of 10 cm along with 

the space between the mango trees with large 

crowns. We assume these large crowns could be 

obstacle to block the satellite sensor could not detect 

the ground surface clearly where the soil moisture 

sensors are located.  
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Table 8: Combination of selected sensors generate highest and lowest R2 
 

Sensor No. m vs. NDWI m vs. NSMI 

01A 01B 13A 13B 

    0.7150 0.7825 

    0.8038 0.6031 

    0.3288 0.1788 

    0.1184 0.0590 
 

Table 9: NDVI values of the sensors in the observation dates 
 

Date 01A 01B 04A 04B 07A 07B 10A 

Nov. 08, 2019 0.6801 0.6936 0.6814 0.6984 0.6853 0.7129 0.6952 

Dec. 03, 2019 0.5068 0.4537 0.6329 0.5922 0.6104 0.7035 0.5359 

Dec. 08, 2019 0.4962 0.4920 0.6055 0.5853 0.5591 0.6719 0.5039 

Dec. 13, 2019 0.4686 0.3626 0.6167 0.5293 0.6252 0.6477 0.5716 

Dec. 18, 2019 0.4377 0.3975 0.6035 0.5526 0.6084 0.6791 0.5376 

Jan. 27, 2020 0.4530 0.3619 0.4757 0.4328 0.4325 0.4895 0.4162 

Feb. 01, 2020 0.4228 0.3008 0.4199 0.3885 0.3787 0.4003 0.3680 
 

Table 10: NDVI values of the sensors in the observation dates (continued) 
 

Date 13A 13B 16A 19A 22A 25A Min. 

Nov. 08, 2019 0.6919 0.6827 0.7080 0.7129 0.6814 0.6902 0.6801 

Dec. 03, 2019 0.4488 0.5259 0.6293 0.7035 0.6329 0.6622 0.4488 

Dec. 08, 2019 0.4065 0.4764 0.6232 0.6719 0.6055 0.6055 0.4065 

Dec. 13, 2019 0.4466 0.4927 0.5623 0.6477 0.6167 0.6341 0.3626 

Dec. 18, 2019 0.4212 0.4714 0.5866 0.6791 0.6035 0.6570 0.3975 

Jan. 27, 2020 0.3340 0.4465 0.4569 0.4895 0.4757 0.5353 0.3340 

Feb. 01, 2020 0.2977 0.4002 0.4018 0.4003 0.4199 0.4803 0.2977 

 

For example, for sensor 13B and others which give 

very low R2 value between m values and NDWI and 

NSMI as well. To prove this assumption, we have 

generated a time-series of NDVI images of the study 

area for all observation dates, from Nov. 08, 2019 to 

Feb. 01, 2020 to analyse the vegetation cover at the 

image pixel location of the sensors, as shown in 

Table 9 and its continued Table 10. The idea is the 

lower the NDVI value, the lesser vegetation cover, 

which means the ground surface is exposed as an 

open space, and thus, the satellite sensor could 

detect the reflected energy from the ground, so the 

soil moisture index NSMI can be generated more 

accurate as there is less obstacle from the mango 

tree crows or other surround vegetation to cover the 

ground surface where the soil moisture sensors are 

located. On the contrary, the higher the NDVI value, 

the more vegetation cover, which means the ground 

surface is blocked and thus, the satellite sensor 

could not efficiently detect the reflected energy 

from the ground, so the soil moisture index NSMI 

can be generated less accurate as there is more 

obstacle from the mango tree crows or other 

surround vegetation to cover the ground surface 

where the soil moisture sensors are located. Based 

on this idea, we need to investigate the minimum 

NDVI value among these sensors in the observation 

period. At first, we allocate the minimum NDVI 

value of all sensors for each observation date, which 

the result is shown in the pre-last column of the 

Tables 9 and 10. Next, we investigate the minimum 

NDVI value of each sensor’s location for all 

observation dates. The result shows that, for the first 

case of the investigation, the minimum NDVI value 

is found which is 0.2977, and belong to the sensor 

13A. The other nearest minimum NDVI value to 

this is the minimum NDVI value of sensor 

13A(0.2977) and 01B (0.3008), respectively, which 

ranges from 0.29 to 0.30. 
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Therefore, the remained minimum NDVI value of 

each sensor ranges from 0.36 to 0.42 as well as the 

minimum NDVI value of all sensors for each 

observation date ranges from 0.3340 to 0.6801, and 

it is larger than the minimum NDVI value of 0.2977 

of sensor 13A. Therefore, the minimum NDVI 

values found here are 0.2977 and 0.3008, and are 

belong to the sensor 13A and 01B, respectively. 

This shows that, the NDVI pixels of these two 

sensors are related to the sparse vegetation cover as 

the NDVI is less than 0.3. Consequently, m values 

of the sensors 13A and 01B located at the less 

vegetation cover pixels have a very high correlation 

with NDWI and NSMI, than other sensors in the 

image pixels of NDVI larger than 0.3. 

 

6. Conclusions 

After studying the relationship between soil 

moisture measured by the ground sensor and the 

remote sensing indices which are related to the soil 

moisture (NSMI), vegetation-related (NDVI), and 

vegetation water-content (NDWI) in the study area, 

we concluded that, among the remote sensing 

indices, the result shows that the measure soil 

moisture m have a similar trend with NDWI. The 

correlation between m and NDWI and NSMI in the 

observation period is high, comparing with other 

indices. The spatial analysis shows that applying the 

correlation of these remote sensing indices NDWI 

and NSMI; we can see that the density of the 

vegetation influences the correlation between m and 

these indices. In the location of sparse vegetation 

density, the correlation value is higher than in the 

location of dense vegetation density. Finally, it is 

concluded that NDWI and NSMI are suitable 

remote sensing indices for estimating the soil 

moisture data from satellite imagery in the land 

cover where NDVI is less than 0.3. 

As the results have been observed, some of the 

sensor’s data display a very good, good, and low or 

poor correlation with their corresponding remote 

sensing indices which are NDWI and NSMI. 

According to this finding, this gives us the idea to 

explore more and analyze more deeply to find out 

why some sensors provide such different correlation 

levels? That is becoming a very challenging 

question to find out the reason behind this. 

Therefore, at the end of the in-deep analysis for a 

different group of sensors and different remote 

sensing indices, the result shows that the higher 

NDVI at the sensor location, the less the correlation 

value. That tells us there are some ‘things’ behaves 

as an ‘obstacle’ to disturb or influence the 

correlation values.  

In our case, the surrounding vegetation cover blocks 

the reflecting energy from the soil where the sensor 

locates to the satellite sensor. 
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