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Abstract 

Peatland plays an important role in the global climate. Balancing economic, social and conservation needs 

on peatland utilization become an obligation in developing sustainable peatland regulation. To identify the 

appropriate land function in the peatland environment, the depth of peat is the main property to manage those 

balance needs. On the other hand, vast areas of peatland changing hinder rapid peat depth mapping method 

to have high accuracy. Multi-temporal remote sensing data were used to identify peatland-related land-use 

changes. The vegetation and wetness indices spectral transformations had been analyzed. The method used 

for the accuracy test in this study was correlation and regression analysis for modeling and the Standard 

Error of Estimate (SEE). The results of this study showed that the vegetation indices (NDVI, SAVI, and 

MSARVI) and NDSI were not able to obtain peat thickness models due to the unstable vegetation and land 

cover changes. However, the NDWI was fairly satisfied with the statistical assessment and was able to model 

the peat thickness with 41.96% accuracy. The determination of a sample design, the number and distribution 

of samples in preserved land covers, and the unexplained variables and external factors in this study need to 

be considered in further research. The vegetation indices and wetness indices potentially can be the 

alternative variables to construct the peat depth map. 

 

 

1. Introduction 

Indonesia is home to 13.3 million ha of tropical 

peatlands (Anda et al., 2021) becoming one of the 

largest among other countries in the world (Dargie 

et al., 2017). Peatlands in the country were formed 

by the prolonged accumulation of decomposed 

organic materials for thousands of years, that 

subsequently molded a biconvex shape in general 

(Rieley & Page, 2016). Therefore, the thickness of 

accumulated peat soils reflects the amount of stored 

carbon, reaching 10-fold the carbon storage above 

the ground (Draper et al., 2014; Rudiyanto, 

Minasny, Setiawan, et al., 2016). This indicates that 

Indonesia has a massive contribution to soil carbon 

storage worldwide, yet on the other hand is also 

potential as the highest carbon emitter caused by the 

vast peatland degradation in these (Page et al., 

2011). Carbon emission of drained peatland in 

Indonesia has occurred, releasing approximately 632 

Tg/yr CO2 (Jauhiainen et al., 2008). The original 

pristine peatlands were converted to other land uses, 

widely for agriculture and plantations to support 

food and economic needs (Umarhadi et al., 2022). 

However, the use for plantations is not completely 

appropriate for peatlands, taking an example of the 

failure of the Mega Rice Project in 1996 that 

established one million ha of rice fields over 

peatlands, ended up being abandoned and caused 

severe environmental issues (e.g., land fires) 
(Hergoualc’h et al., 2018).  

The government of Indonesia has attempted to 

conserve the peatlands area, starting by issuing 

several forms of provisions and agreements 

regarding the development and management of 

peatlands, and the recent one is the establishment of 

the Peat Restoration Agency in 2016 (Harrison et 

al., 2020). However, it still does not dampen the 

exploitation activities on a large scale, worsened by 

the land burning as the first common treatment for 

irresponsible peatland clearing. Development and 

management of peatlands as productive land cannot 

be applied to all types or classifications of peat soils. 
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Indonesian Government (2016) declared only 

shallow peat soils with under three meters of depth 

can be used as productive land. Whereas thicker 

peat soils should be strictly designated for 

conservation because they are very fragile and 

vulnerable. On the other hand, the existing peatland 

conversion ignores those considerations, where 

peatland below 3 meters has been also exploited 

(Wahyunto et al., 2016).  

Along with the times, mapping of peatlands has 

advanced with the presence of remote sensing 

technology, taking the advantage of its cost-

effectiveness, quickness, and precision to facilitate 

field activities (Rudiyanto, Minasny, & Setiawan, 

2016). Several studies estimated peat thickness with 

the approach of elevation as both variables are 

linearly correlated considering the dome shape 

(Jaenicke et al., 2008; Rudiyanto et al., 2018; 

Vernimmen et al., 2020). Besides elevation, peat 

depth information could be described also by 

several factors, such as the characteristic of land 

cover characteristic. For instance, with every 

increase of peat thickness, the vegetation that can 

grow on it will be lower or stunted (Page et al., 

1999). In addition, the peat condition is always wet 

and humid both in the dry and rainy seasons (Noor, 

2001). Hence, remote sensing data particularly 

optical sensors could be employed for rapid 

mapping peat depth. Sentinel-2B imagery provides 

13 spectral bands and is beneficial to be used for 

creating vegetation index and water index which 

both are related to peat depth information. 

Consequently, the identification of peat 

thickness using remote sensing followed by field 

observation is crucial to be explored. Hence, a 

balanced condition can be formed between 

productive land and conservative land. This research 

aims to measure the ability of remote sensing which 

is converted into vegetation and water index with 

field observation to estimate peat depth. 

Subsequently, the development and management of 

peat for productive land is better targeted and 

minimizes environmental damage. 

 

2. Study Area 

The research location is in Bengkalis Island, 

Bengkalis Regency, Riau Province. Centered at 

approximately 102° 17' 43.364″ E and 1° 28' 2.524″ 

S (Figure 1). The Bengkalis Regency has an area of 

7,793.93 km2 (Kabupaten Bengkalis, 2019). 

Elevation within the study area ranges from 0–27 

m.a.s.l. with flat topography and most of the areas 

are covered by peat soils. However, the peatlands on 

the island are currently under degradation causing 

the loss of carbon from the organic soils (Umarhadi 

et al., 2021). 
 

 
Figure 1: Overview of the study area in Bengkalis Island with a background of Sentinel-2B on 8,4,3  

false-color composite acquired on 6 May 2019 
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Bengkalis Island is a tidal topogenic peat island 

with two types of rocks, which are young superficial 

deposits and older superficial deposits. Information 

based on the geological map of Bengkalis, young 

surficial deposits here are in the form of clay, silt, 

clean gravel, vegetation rafts, peat swamps, and 

coral reefs. Meanwhile, older superficial deposits 

are in the form of clays, silts, clayey gravel, 

vegetation rafts, and granite sands. These deposits 

dominate the island of Bengkalis in almost all parts 

of the island. Most of the island consists of 

organosol soils, which are types of soil that contain 

a lot of organic matter and gleisol soil. 

 

3. Data and Method 

The main data used to identify peat thickness is 

Sentinel-2B data on Bengkalis Island with an 

acquisition time of 6 May 2019 which is close to the 

field survey in April - May 2019 so the temporal 

bias and corresponding pixel values are minimal. 

The flowchart of this study is presented in Figure 2. 

The preprocessing method for Sentinel-2B was 

converting Top of Atmosphere (TOA) into at 

surface reflectance with the Dark Object Subtraction 

method in ENVI software. Landsat 5 TM was 

acquired in July 1998 for land cover change 

analysis. Hence, the spatial resolution of Sentinel-

2B was resampled into 30 meters based on Landsat 

5 TM spatial resolution. 

 

3.1 Field Survey 

The field survey was conducted from April until 

May 2019. The purposive sampling method was 

used to determine the peat information from the 

field based on the accessibility. Ideally, peat depth is 

modeled based on the elevation data which indicates 

the peat dome information (Rudiyanto et al., 2018). 

The freely accessible elevation data (e.g., SRTM 

DEM and DEMNAS) represent the surface 

elevation instead of terrain, hence the contribution 

of objects over peat surface may lead to biased 

results. Meanwhile, LiDAR data that is commonly 

used is not freely available. Therefore, it was not 

reliable for this study, since the study area is 

dominated by vegetated land cover. In addition, 

systematic sampling can be used to show the depth 

in the entire area. However, in this research, 

mapping peat depth with systematic grid sampling 

was not feasible because of accessibility.  

Peat thickness data was obtained from peat depth 

measurements using peat drills. Furthermore, the 

drilling method was perpendicular to the soil 

surface. Peat depth information was obtained by 

measuring the distance of the peat layer before 

mineral soil layers were distinguished. Vegetation 

canopy density data was also taken using the 

hemispherical photograph. A total of 55 spatially 

distributed peat depth and vegetation canopy density 

sample data were obtained, 33 of which were used 

to create a peat depth model toward sentinel-2B data 

whereas the remaining 22 samples are for assessing 

the accuracy of the model (Figure 1).  

 

3.2 Image Transformation 

Sentinel-2B Level 1C images have been 

radiometrically and geometrically corrected hence 

the spatial displacement between image pixels and 

the corresponding location in the field is relatively 

not significant. Atmospheric correction was applied 

to achieve the surface reflectance by using the 

DOS1 (Dark Object Subtraction 1) method and 

processed in ENVI software. The concept of DOS is 

to remove the atmospheric contribution in the pixel 

value by observing the dark object pixel value. The 

darkest object in the image is assumed to have a 

value of 0, however, due to the existence of the 

atmosphere, there is an offset value in the darkest 

object. The surface reflectance is achieved by 

subtracting the offset value from the darkest object. 

The lowest value in the image is supposed to be 0 

and it indicates there is no atmospheric effect 

(Chavez, 1988 and Yan and Li, 2018). Image 

masking was performed to eliminate other objects 

that could affect the process and analysis. The 

objects such as clouds and shadows that caused the 

absence of surface information need to be removed. 

The image masking process was performed 

manually through visual interpretation and set the 

boundary of unwanted objects. Removed pixels will 

have no data value and be visualized as no 

information. This study used spectral transformation 

methods to identify peat thickness. The methods 

were three types of vegetation indices and two types 

of wetness indices. Those types of indices as an 

approach method were selected to compare and 

identify the most suitable spatial transformation 

approach for peat thickness mapping. Details of the 

spectral transformations used can be seen as follows 

(Table 1). 

Based on Table 1, each vegetation and wetness 

index have different sensitivity against different 

field condition. NDVI (Normalized Difference 

Vegetation Index) represents the basic vegetation 

index which has a range of -1 to 1. SAVI (Soil 

Adjusted Vegetation Index) minimizes the soil 

effect toward the brightness of the vegetation 

canopy.  
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Table 1: Equations of vegetation and wetness indices used in this study 
 

Index Algorithm References 

NDVI (ρNIR- ρRed)/(ρNIR+ ρRed) (Rouse et al., 1974) 

SAVI (ρNIR-ρRed)/(ρNIR+ρRed+L)*(1+L) (Rondeaux et al., 1996) 

MSARVI 2ρNIR+1- √(〖[(2ρNIR+1)〗^2- γ(ρNIR-ρRB)] 
) / 2 

(Huete et al., 1992) 

NDWI (ρGreen- ρNIR)/(ρGreen+ ρNIR) (Rokni et al., 2014) 

NDSI (ρSWIR- ρNIR)/(ρSWIR+ ρNIR) (Domiri, 2006) 
Description: 

ρRB: ρRed- γ(ρBlue- ρRed)    ρNIR: Near infrared reflectance value 
ρRed: Red reflectance value    ρSWIR : Middle Infrared reflectance value 

ρBlue: Blue reflectance value    L: Enlightenment soil background correction 

 ρGreen: Green reflectance value    γ: 1.0 
 

 
 

Figure 2:  Methodology of this study 

 

Furthermore, MSARVI (Modified Soil and 

Atmospheric Resistant Vegetation Index) is a 

modification toward weakness of other vegetation 

indices which could detect greenness level of 

vegetation and reduce the effect of soil and 

atmosphere. On wetness index, NDWI (Normalized 

Difference Wetness Index) could detect the 

condition of surface wetness, and NDSI 

(Normalized Dryness Surface Index) for detecting 

dryness surface.  

 

3.3 Peat Depth Modeling and Statistical Analysis 

Mapping peat depth and its extent is crucial for 

carbon stock estimation and peatland management. 

Peat depth could be assessed by its vegetation 

canopy. When the canopy density is high, the depth 

of peat is low. This statement is justified by the fact 

that peat soil interferes with the vegetation fertility 

above the soil. This study utilized three vegetation 

indices which are NDVI, SAVI, and MSARVI to 

analyze canopy density. On the other hand, the peat 

ecosystem is highly correlated by the wet condition 

because of the large water reservoir. Therefore, we 

also used two wetness indices to be compared, 

namely NDWI and NDSI, respectively. 

Regression analysis on this research used 

multilevel regression to produce peat thickness 

information. To obtain vegetation canopy 

estimation, we used correlation and regression 

measurement toward NDVI, SAVI, and MSARVI 

indices. Furthermore, to measure data normality, we 

tested using the Kolmogorov-Smirnov method. 

Then, a data normality test is performed to see 

whether the data is normally distributed or not. 

Correlation and regression analysis methods to see 

the relationship between variables and make a 

model of peat thickness. Then to find out the 

accuracy value used the Standard Error of Estimate 

(SEE) method. 
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4. Results and Discussion 

4.1 Transformation of Vegetation and Wetness 

Indices 

This study used the vegetation index and the 

wetness index as spectral transformation 

approaches. Both transformations were used 

because they can sharpen certain information while 

suppressing or eliminating other information 

(Danoedoro, 2012). Proper pre-processing image is 

important to achieve reliable vegetation and wetness 

indices. The atmosphere effect was removed by 

applying the DOS method, and unnecessary objects 

such as clouds have been masked to obtain reliable 

results. The results of the spectral transformation 

using vegetation index ranges from -1 to 1 (Table 

2). Derived vegetation indices and wetness indices 

values were evaluated through visual evaluation 

compared to false-color composite for vegetation of 

the study area to make sure of its reliability (Huang 

et al., 2021; Loranty et al., 2018). NDVI values 

represent quite well the vegetation canopy density 

based on false-color composite in Figure 1. The 

high value of NDVI indicates dense vegetation that 

is visualized as darker color in the false-color 

composite image. It can be seen that the SAVI and 

MSARVI values have a narrow range of values in 

comparison with NDVI but still show a high canopy 

density. The higher minimum value indicates that 

MSARVI is very effective in suppressing objects 

other than vegetation, but in distinguishing the 

density of vegetation on Bengkalis Island, MSARVI 

becomes less effective. NDWI and NDSI wetness 

index values also have a range of -1 to 1. Based on 

the research of (Bala et al., 2018), negative values 

on NDWI indicate the object of built-up area, land, 

and open land. While vegetation objects are shown 

with very low negative values. While positive 

values indicate objects of water bodies. In contrast 

to NDWI, a negative value on NDSI indicates a 

water body object. While a positive value on NDSI 

shows open land objects and built-up land. While 

the vegetation object is negative but it is closer to 

the value of 0. The NDWI showed that Bengkalis 

Island has a very high wetness level, and these 

results are supported by the fact that most of the 

island is dominated by peat and vegetation. On the 

other hand, the NDSI range showed that Bengkalis 

Island has a very low to moderate level of land 

drought, it also means that Bengkalis Island has a 

very high degree of wetness. 

 

4.2 Identification of Peat Thickness through 

Vegetation Index 

Multi-level regression analysis was used in this 

research to identify peat thickness through 

vegetation indices. Correlation and regression 

analysis were performed to obtain the estimation of 

vegetation canopy cover model based on NDVI, 

SAVI, MSARVI in comparison with the canopy 

cover data from the field survey. Data normality 

was measured using the Kolmogorov-Smirnov 

method before data correlation analysis. The results 

showed that the canopy cover data in the field were 

normally distributed with a data set value of 0.088. 

The data is relatively normal because it is below the 

critical value of the Kolmogorov-Smirnov for an 

alpha value of 0.05 (0.23) (Massey, 1951). The 

probability plot graph also shows that the data 

distribution is almost parallel to the 1:1 linear line, 

which means the field canopy cover data is normally 

distributed and tends to have a lot of variances 

(Figure 3).  

The results of correlation analysis showed that 

the relationship between data was quite strong (r = 

0.401 - 0.600) and unidirectional. In Table 3, the 

best index to describe canopy density in the field is 

the SAVI index (r = 0.433). However, NDVI and 

MSARVI still have a strong relationship. The results 

of regression analysis showed that the ability of 

NDVI, SAVI, and MSARVI in explaining the 

canopy cover in the field through imagery was only 

17.09%; 18.79%; 18.29%, respectively. Then the F-

significance value >0.05 (α) and the t-value 

<2.09302 also stated that the predictor variable did 

not significantly affect Y-variable (Williams, 1984). 

Regression equations (Table 4) were used to 

generate a canopy cover density model as shown in 

Figure 4. 

 

Table 2: The statistics of indices value from Sentinel-2B 
 

Index Minimum Value Maximum Value Mean Std. Deviation 

NDVI -0.54 0.87 0.69 0.14 

SAVI -0.17 0.71 0.16 0.22 

MSARVI 0 0.58 0.11 0.15 

NDWI -0.76 0.93 -0.11 0.15 

NDSI -0.94 0.52 -0.62 0.17 
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Figure 3: The probability plot graph of canopy cover 

 

Table 3: Matrix of correlation values (r) between canopy cover and vegetation indices 
 

 Canopy Cover NDVI SAVI MSARVI 

Canopy Cover 1    

NDVI 0.41 1   

SAVI 0.43 0.98 1  

MSARVI 0.43 0.92 0.98 1 
 

Table 4: Regression analysis results of canopy cover 
 

 R Square (R2) F-Significance t-value t-significance Regression Equation 

NDVI 0.17 0.08 1.87 0.08 y =119.52x - 32.017 

SAVI 0.19 0.06 1.98 0.06 y =136.38x - 9.2967 

MSARVI 0.18 0.07 1.95 0.07 y =221.93x - 17.934 
 

 
Figure 4: Vegetation canopy density models based on three vegetation indices (i.e., NDVI, SAVI, and 

MSARVI) 

 

Table 5: Matrix of correlation values (r) between the field data of peat thickness and the peat thickness 

 models based on vegetation indices 
 

 Peat Thickness NDVI Model SAVI Model MSARVI Model 

Peat Thickness 1    

NDVI Model -0.11 1   

SAVI Model -0.16 0.96 1  

MSARVI Model -0.18 0.84 0.96 1 
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Table 6: Regression analysis results of peat thickness based on vegetation indices 
 

 
R Square 

(R2) 
F-Significance t-value t-significance Regression Equation 

NDVI Model 0.01 0.55 -0.60 0.55 y = -3.6194x + 650.38 

SAVI Model 0.02 0.38 -0.88 0.38 y = -5.1048x + 724.27 

MSARVI Model 0.03 0.32 -1.00 0.32 y = -5.7767x + 757.29 

 

The NDVI, SAVI, and the MSARVI model are 

then tested for accuracy using the Standard Error of 

Estimate (SEE) method. The results for those 

indices are 69.14%, 69.68%, and 70.32% accuracy, 

respectively. The estimated map of vegetation 

canopy density with the highest accuracy value is 

based on MSARVI transformation with an accuracy 

value of 70.32%. Based on Figure 4, the low to very 

low-density canopy class is in the middle of the 

island with high peat thickness (identification based 

on field data). Then, the medium class with a 

canopy density of 40 - 60% is also still scattered in 

the middle of the island, and the canopy density is 

high to very high in small parts around the island. In 

addition, the pattern of tree canopy density in 

Bengkalis Island slightly represents the condition of 

the peat thickness and shares a similar idea to the 

previous theory and the general situation in the 

field. The regression results between vegetation 

canopy density models from NDVI, SAVI, and 

MSARVI and peat depth were not significant with 

0.55, 0.38, and 0.32, respectively (Table 5 and Table 

6).  

Therefore, due to the insignificant regression 

results among those variables, a peat depth map was 

not able to be obtained. Significant spatial 

autocorrelation was noticed in the sampling design 

which may affect the results (Griffith & Chun, 

2016; Ramezan et al., 2019). It also indicates the 

observed peat thickness in the study area was not 

enough. As mentioned, limited access to reach the 

study area was the obstacle to collecting samples. 

Different land cover on peat and its historical 

change may affect the inconsistent results. The 

results described that these vegetation canopy 

density models from vegetation indices are not good 

enough to elucidate the condition of peat thickness.  

 

4.3 Identification of Peat Thickness through 

Wetness Index 

Analysis through the wetness index was not applied 

a two-step process of accuracy testing due to the 

limitations of the wet soil testers in the field. The 

results of the wetness index regression with the peat 

thickness data in the field also have poor 

performance although it is slightly higher than the 

regression index of vegetation. The regression 

results of NDWI and NDSI show an F-significance 

value of 0.1 and 0.33, respectively (Table 7 and 

Table 8), indicating that only NDWI has a 

significant result. Therefore, only NDWI was 

conducted to obtain the peat depth model. The peat 

depth model is shown in Figure 5 by only 

considering the peatlands area, thus non-Peat areas 

were masked out. The ability to explain the 

condition of peat thickness in the field through the 

NDWI wetness index is 19.22%. NDWI values in 

Bengkalis Island were mostly influenced by 

vegetation coverage, especially at the location of the 

samples were taken. However, in some parts, the 

open land was observed in wet conditions because 

of thick peatland, even though the value is much 

lower than the others. This might be caused by the 

small amount of vegetation that grows on it. While 

identification of wetness using NDSI was slightly 

irrelevant because the relationship and translation of 

the information are not well described. Therefore, 

NDSI is not suitable enough to identify peat 

thickness because of the possibility of data 

misinterpretation. The accuracy of the peat 

thickness map is 41.96% for the NDWI model. The 

relationship between the two variables will be very 

clear and strong if the land cover on peat is still in 

the natural form. Poor performance results were also 

caused by the indirect effect of surface topography 

and peat thickness on the vegetation changes. 

However, the significant effect may come from 

other characteristics of peatlands such as 

hydrological dynamics, chemical properties, and 

organic matter. Where the three characteristics 

occur as a form of balance between peat 

accumulation and peat degradation of natural forest 

(Page et al., 1999). 
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Figure 5: Peat thickness model based on NDWI with only considering the peatlands area 
 

 
Figure 6: Land cover of Bengkalis Island in (a) 1998 and (b) 2018, and (c) area of land cover in 2018  

with the change from 1998 
 

Table 7: Matrix of correlation values (r) between the field data of peat thickness and the peat thickness models 

based on NDWI and NDSI 
 

 Peat Thickness NDWI NDSI 

Peat Thickness 1   

NDWI 0.44 1  

NDSI -0.17 -0.27 1 
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Table 8: Regression analysis results of peat thickness models based on NDWI and NDSI 
 

 R Square (R2) F-Significance t-value t-significance Regression Equation 

NDWI 0.19 0.01 2.71 0.01 y = 1458.5x + 732.98 

NDSI 0.03 0.33 -0.99 0.33 y = -568.2x + 127.29 
 

4.4 Land Cover Change 

Human activities have been interfering with the 

sustainability of peatlands in Bengkalis Island. 

Based on the land cover change analysis (Figure 6), 

a massive area of forests (high-density woody 

broadleaves) has been converted to low-density 

woody vegetation associated with plantations, 

leaving only 33.38% (30,256 ha) of the total area as 

a forested area in 2018 (Figure 6). Most of the area 

has been converted into mixed gardens, oil palm, or 

rubber plantations, which was discovered during a 

field survey of the changed locations. However, due 

to the limited availability of high-resolution satellite 

imagery, the detailed land cover classes were not 

employed in this study. Built-up area increased 

significantly as well to reach 6,772 ha in the recent 

observation date, however, they are mainly located 

in the coastal area, i.e., in the transition between 

peatlands and non-peatlands (mineral soils). The 

relationship between canopy cover and peat 

thickness is very low for all indices due to the 

condition of degraded peatlands in Bengkalis Island. 

Canopy cover might be well correlated with peat 

thickness where peatlands are still in pristine 

condition without any disturbance.  

Peatlands in our study area have been degraded 

massively, reportedly since the 1970s, consisting of 

land drainage and conversion to plantations 

(Umarhadi et al., 2022). This led to the remaining 

forests not being in the ideal condition of peat 

swamp forests. Future studies should investigate the 

similar methods applied in the peatlands that are still 

naturally preserved. 

 

5. Conclusion 

This study determines the peat thickness map based 

on the wetness index and the vegetation canopy 

density derived from the vegetation index. 

Multispectral images of Sentinel-2B provide 

necessary bands for image transformations. Three 

vegetation indices (i.e., NDVI, SAVI, and 

MSARVI) and two wetness indices (i.e., NDWI and 

NDSI) were used to obtain a spatial model of peat 

thickness. In general, the employed vegetation 

indices represented the vegetation greenness quite 

well to obtain vegetation canopy density models. 

However, the regression results of the vegetation 

canopy density models with peat thickness data 

collected from the field are not significant.  

Therefore, these models were not able to obtain a 

peat thickness model. It indicates the unstable 

condition of preserved land cover on peat such as 

degraded vegetation canopy density affected the 

results. On other hand, the sampling design was not 

satisfactory enough to represent the wide range of 

peat thickness variance due to limited access in the 

study area. Similar to NDSI, this wetness index does 

not have a significant regression result on peat 

thickness. The NDWI wetness index has quite a 

significance based on the regression results so that a 

spatial model of peat thickness is obtained. 

However, the accuracy of the spatial model of peat 

thickness from NDWI has an accuracy rate of only 

41%. The results need to be improved to achieve an 

accurate peat thickness map. The determination of a 

sample design that considers spatial autocorrelation, 

the number and distribution of samples in preserved 

land covers, and unexplained variables and external 

factors in this study need to be considered in further 

research. The vegetation indices and wetness indices 

potentially can be the alternative variables to 

construct the peat depth map. 
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